Twisted Spherical Functions on the Finite Poincaré Upper Half-Plane
نویسندگان
چکیده
منابع مشابه
A special subspace of weighted spaces of holomorphic functions on the upper half plane
In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...
متن کاملA remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane
In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.
متن کاملTwo Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane
Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...
متن کاملThe Poincaré Half-Plane for Informationally-Complete POVMs
It has been shown in previous papers that classes of (minimal asymmetric) informationally-complete positive operator valued measures (IC-POVMs) in dimension d can be built using the multiparticle Pauli group acting on appropriate fiducial states. The latter states may also be derived starting from the Poincaré upper half-plane model H. To do this, one translates the congruence (or non-congruenc...
متن کاملOn character sums with distances on the upper half plane over a finite field
For the finite field IFq of q elements (q odd) and a quadratic nonresidue α ∈ IFq, we define the distance function δ ( u+ v √ α, x+ y √ α ) = (u− x)2 − α(v − y)2 vy on the upper half plane Hq = {x + y √ α | x ∈ IFq, y ∈ IFq} ⊆ IFq2 . For two sets E ,F ⊂ Hq with #E = E, #F = F and a non-trivial additive character ψ on IFq, we give the following estimate ∣∣∣∣∣ ∑ w∈E,z∈F ψ(δ(w, z)) ∣∣∣∣∣ ≤ min {√ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2002
ISSN: 0021-8693
DOI: 10.1006/jabr.2001.9042